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A View from the Bridge
Natalie Paquette

String theory is a quantum theory of gravity.1 Albert 
Einstein’s theory of general relativity emerges natu-
rally from its equations.2 The result is consistent in 

the sense that its calculations do not diverge to infinity. 
String theory may well be the only consistent quantum 
theory of gravity. If true, this would be a considerable 
virtue. Whether it is true or not, string theory is indis-
putably the source of profound ideas in mathematics.3 
This is distinctly odd. A line of influence has always run 
from mathematics to physics. When Einstein struggled 
to express general relativity, he found the tools that he 
needed had been created sixty years before by Bernhard 
Riemann. The example is typical. Mathematicians discov-
ered group theory long before physicists began using it. In 
the case of string theory, it is often the other way around. 
Physics has lent the dignity of its ideas to mathematics. 
The result is what Greg Moore has called physical math-
ematics.4

We often envision physics on a flat spatial 
background. The billiard balls are round, but 
the table is flat. In performing experiments on 

the earth’s surface, we treat the curvature of the planet as 
negligible, and take as our background three-dimensional 
Euclidean space. From the sphere to the torus and beyond, 
there are many more shapes on which to study physical 
systems. These offer different and fascinating ways of 
understanding physics. An electron confined to a sphere 
through which a magnetic flux passes can only occupy 
certain quantized energy levels. Similarly, a torus has two 
nontrivial cycles. The winding numbers of a string keep 
track of how many times it has wound itself around each 
cycle.

Quantum mechanics is one thing; special relativ-
ity, another. These theories are not naturally disposed 
to peaceful coexistence. Orthodox quantum mechanics 
makes no allowances for particle creation and annihila-
tion. Special relativity encourages both. Fields are needed 
to handle the overflow. Quantum field theories are quan-
tum-mechanical systems obeying special relativity. The 
Standard Model is a quantum field theory. Physicists often 
endow quantum field theories with extra symmetries. For 

example, supersymmetric theories require particles to 
come in pairs. For every bosonic particle there is a fermi-
onic superpartner.

Supersymmetric field theory has a disheartening 
impediment. Suppose that a supersymmetric quantum 
field theory is defined on a generic curved manifold. The 
Euclidean metric of Newtonian physics and the Lorentz 
metric of special relativity are replaced by the manifold’s 
own metric. Supercharges correspond to conserved Killing 
spinors. Solutions to the Killing spinor equations are plen-
tiful in a flat space, but the equations become extremely 
restrictive on curved manifolds. They are so restrictive 
that they have, in general, no solutions. Promoting a flat 
supersymmetric field theory to a generic curved mani-
fold breaks some or all of its supersymmetries. Calabi–Yau 
manifolds, as it happens, enjoy a certain flatness prop-
erty—Ricci-flatness, a sort of flatness lite; and they admit 
conserved Killing spinors.

But the sphere admits no such solutions.
In the 1980s, Edward Witten introduced physicists to 

the topological twist.5 A twist works to couple a super-
symmetric field to a curved manifold. With just the right 
twist, nontrivial solutions to the Killing spinor equations 
emerge. This is very much a salvage operation, one res-
cuing some fraction of the supersymmetries found in flat 
space. Physical observables of the twisted theory are just a 
subset of those that appear in the untwisted theory. While 
the observables in the untwisted theory depend, among 
other things, on the detailed geometry of the background 
manifold, the subset appearing in the twisted theory often 
depends only on its topological details.

This is important; it is mathematically important.
Topologically twisted field theories are sometimes 

called cohomological field theories. The twist endows 
such theories with a Grassmann, or anti-commuting, 
scalar symmetry Q. The physical observables lie in the 
cohomology of this symmetry. Deformations of the metric 
are Q-exact, and this immediately enforces the met-
ric-independence of the theory’s correlation functions. 
Correlation functions of Q-closed fields can sometimes be 
computed exactly by the powerful technique of supersym-
metric localization.6
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These computable correlation functions are topologi-
cal or geometric invariants. Even if the physical universe 
somehow did not exist, these invariants would still be the 
cynosure of many mathematical eyes.

Four-dimensional geometry encompasses a wealth 
of exotic structures. The mathematician’s first 
imperative is to impose order on its abundance by 

classifying its four-dimensional manifolds. Not everything 
must be done at once. First things first. When are two man-
ifolds topologically equivalent, or homeomorphic? In 1982, 
Michael Freedman showed that two manifolds are homeo-
morphic if and only if they have the same intersection form 
on their (co)homology lattices.7 Second things second. 
Homeomorphic manifolds may not be diffeomorphic; 
they are not equivalent as smooth manifolds. Smoothness 
imposes a new level of stratification among the manifolds, 
and with the new level, a new question. How to distinguish 
manifolds that are homeomorphic, but not diffeomorphic, 
from those that are both? In 1983, Simon Donaldson intro-
duced a set of invariants of smooth 4-manifolds which 
distinguish homeomorphic-but-not-diffeomorphic man-
ifolds.8 Donaldson invariants have a rigorous geometric 
definition, but they owed their inspiration to instanton 
configurations in Yang–Mills gauge theory. These config-
urations are solutions to the theory’s equations of motion. 
Among mathematicians, they are known as anti-self-dual 
(ASD) connections.

A Lie group G is given, together with a principal 
G-bundle P over M. The connection is A, which is linked 
to the concept of parallel transport. Physicists refer to 
A as a gauge field, and, like all other fields, A is allowed 
to fluctuate in the path integral. There are other natural 
vector bundles E over M. These are associated to rep-
resentations of G using the principal G-bundle. Their 
connections are induced from A. Physicists regard them 
as matter fields. The curvature of A is a two-form called 
the gauge field strength, and it may be split into self-dual 
and anti-self-dual (ASD) components. If a field strength 
is purely ASD, then integration over M yields a posi-
tive integer, its instanton number. The ASD connections 
minimize the Yang–Mills action so that each instanton 
number labels a different topological sector, or component 
in the space of possible field configurations. For a fixed 
instanton number, there is an abstract geometric space of 
possible ASD connections—the instanton moduli space. 
In the simplest case, directions in the moduli space cor-
respond to parameters such as the spatial position of an  
instanton.

Donaldson defined his topological invariants as inte-
grals of differential forms. Integration over differential 
forms is no more demanding than advanced calculus, but 
what made Donaldson’s application of such techniques so 
daring was his decision to compute these integrals in the 
moduli space of ASD connections.9 Donaldson also con-

structed a map to obtain the appropriate differential forms 
from the homology of M.

In coming to understand the Donaldson invariants, 
physicists struck gold. They provided the practical com-
putations, and several concepts required to complete the 
important proofs. Donaldson invariants over M may be 
folded into Donaldson–Witten generating functions. The 
Witten of Donaldson and Witten is Edward Witten, the 
only physicist to have won a Fields Medal.

In 1994, Witten introduced mathematicians to a twisted 
supersymmetric version of Yang–Mills, placing the theory 
on curved 4-manifolds.10 The result is Donaldson–Witten 
theory. Donaldson invariants appear as the correlation 
functions of the twisted Yang–Mills. Each correlation 
function serves to compute a coefficient in the Donald-
son–Witten generating function. Witten showed explicitly 
how gauge-invariant polynomials of the topological field 
theories, as well as their Q-symmetries, generated all dif-
ferential forms in the image of the Donaldson map.

Nathan Seiberg and Witten then undertook a beau-
tiful physical study of supersymmetric gauge theories, 
and showed that their behavior is equivalent to a field 
theory describing weakly coupled monopoles.11 Equiva-
lences between two different-looking physical systems are 
known as dualities. They are ubiquitous in field and string 
theory. One description of the system may be easy to study, 
but the other is usually not.

Seiberg and Witten’s work led to a new set of com-
putable geometric invariants called the Seiberg–Witten 
invariants, which count the solutions to monopole equa-
tions.12 These invariants, Witten demonstrated, convey 
all of the information provided by the Donaldson invari-
ants, but their simple monopole description makes many 
properties of the Donaldson invariants as plain as day and 
eminently computable. In the space of a few weeks, Don-
aldson wrote, “long-standing problems were solved, new 
and unexpected results were found, along with simpler 
new proofs of existing ones, and new vistas for research 
opened up.”13

This radical simplification of a deep and difficult set of 
mathematical ideas was an oblation from theoretical phys-
ics. The mathematicians never expected to get it, and the 
physicists never expected to give it.

A   string is extended in one spatial dimension and 
propagates itself in time. As it wriggles, the string 
sweeps out a two-dimensional surface in space-

time, its worldsheet. Field theories supported on the string 
worldsheet are both conformal and supersymmetric. Con-
formal symmetries are closely related to the symmetry of 
a system under scale invariance. Whether zoomed in or 
zoomed out, such systems remain the same.

Enumerative geometry concerns itself with counting 
solutions to natural geometric problems. In 200 BCE, 
Apollonius wondered how to find the number of circles 
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tangent to three given circles in a plane. There are eight. 
Were Apollonius alive today he might well ask how many 
surfaces can be embedded inside a higher-dimensional 
manifold, such as a Calabi-Yau manifold.

A string propagating on a Calabi–Yau manifold may 
probe its geometry in a way that is sensitive to the number 
of its complex curves. The information is extraordinarily 
useful because it is precisely these numbers that enumer-
ate the number of ways in which the string worldsheet can 
be embedded in the Calabi–Yau manifold. Consider the 
set of maps from a Riemann surface, or worldsheet, into 
a Calabi–Yau manifold X. The two-dimensional quantum 
field theory describing is called a supersymmetric non-lin-
ear sigma model. Two-dimensional bosonic fields have 
an interpretation as local coordinates on X. Fermionic 
or gauge fields map to sections of appropriate bundles, 
while the coupling constants in the action are geometric 
parameters associated to X. The coupling constant for the 
bosonic kinetic term is just the metric on X.

String theory might have much to say about enumera-
tive geometry, the more so if it could isolate the data in 
the sigma model that encodes the number of curves on the 
manifold.

With this sort of extraction in mind, we might topolog-
ically twist the non-linear sigma model. Two topological 
twists are possible, the A-twist and B-twist, and with these 
twists, two theories, A(X) and B(X).14 Both are topo-
logical field theories, comparable in their own way to 
Donaldson–Witten theory. Their correlation functions 
are independent of the metric on the two-dimensional 
world-sheet. On the other hand, these correlation func-
tions have different space-time interpretations depending 
on the twist, each corresponding to a different subset of 
maps in the untwisted sigma model. The A-twist localizes 
the observables to the holomorphic maps on X; with the 
B-twist, localization selects the constant maps.

Although the two twists produce quite different-look-
ing theories, it turns out that the difference between an 
A-twist and a B-twist is a matter of a minus sign. In the 
untwisted theories, there is an isomorphism between 
sigma models differing only in their sign. One sigma model 
has as its target a Calabi–Yau manifold, X, the other,15 a 
Calabi–Yau manifold Y.16 The equivalence is called a mirror 
symmetry: Y is the mirror of X. At the level of twisted the-
ories, this equivalence becomes an identity A(X) = B(Y). It 
turns out that since constant maps are simple to study and 
holomorphic maps less so, computing quantities in B(Y) is 
a powerful way to compute quantities in A(X).

These yield the Gromov–Witten invariants, which are 
directly related to counting curves. The power of mirror 
symmetry was first exhibited in the context of a simple 
Calabi–Yau manifold known as the quintic.17 Curve counts 
in manifolds can be stratified by the degree of the curve, 
and then assembled into a generating function that orga-
nizes the number of curves for each degree. The more 

complicated or intricate a curve, the higher its degree; 
and the number of curves proliferate as the degree grows. 
Curves of degree 1 are simply lines, and the number of 
(complex) lines in the quintic Calabi–Yau is easily com-
puted. This was determined by Hermann Schubert in the 
late nineteenth century. There are 2,875 complex lines in 
the quintic. In 1986, Sheldon Katz determined that the 
quintic contains 609,250 curves of degree two.

Progress in enumerative geometry was slow. Compu-
tations quickly become laborious. If anyone was disposed 
to a brute-force count of curves of degree three, they kept 
their labors to themselves.

Philip Candelas et al. began studying string theory on 
the quintic in the early 1990s. They were guided by mirror 
symmetry. Denote the quintic by X and its mirror by Y. 
Consider A(X). The Lagrangian, save one term, is Q-ex-
act and therefore trivial in the cohomology of observables. 
The remaining term is an integral of the Kähler form, 
and the Kähler form is, as one might expect, a differential 
form. It is this form that allows one to measure volumes of 
cycles in, say, a Calabi–Yau manifold of X. A(X) depends 
only on the Kähler form. Correlation functions in A(X) 
reduce to integrals over the space of holomorphic maps, 
and these coincide with Gromov–Witten invariants. 
The sigma model requires an infinite series of difficult 
non-perturbative corrections. By the magic of mirror sym-
metry, they must be equivalent to quantities in B(Y), and 
these reduce to integrals over the space of constant maps. 
These integrals turn out to be classically exact quantities 
called periods, which depend on the complex structure of 
Y.18 The Kähler structure controls the size of the manifold 
or submanifolds, the complex structure, its shape. Can-
delas et al. were able to compute the period integrals of Y, 
and, using a judicious change of variables called the mirror 
map, expand the answer to extract Gromov–Witten invari-
ants, order by order, in the degree of the holomorphic map.

There now followed a dazzling display of physical 
mathematics.

At the same time Candelas et al. were wandering down 
a hall of mirrors, mathematicians were working hard to 
count curves of degree three using their own sophisticated 
machinery and a variety of ingenious computer algorithms. 
Geir Ellingsrud and Stein Strømme conjectured that there 
were 2,682,549,425 such curves. Analytical methods of 
computation and proof had, at this stage, lapsed. Brute 
force methods prevailed. They presented this result at 
the Mathematical Sciences Research Institute in Berke-
ley. It was 1991. Candelas and his collaborators demurred. 
The number was 317,206,375. The mathematicians were 
skeptical. In mirror symmetry, the physicists were using 
a mathematically unheard-of technique. Their computa-
tions came hand in hand with the remarkable claim that 
classical period integrals in one Calabi–Yau were equiv-
alent to curve counts in an entirely different Calabi–Yau. 
These claims were, if true, revolutionary. Ellingsrud and 
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Strømme meticulously checked their work and found a 
bug in their computer code.

They announced their correction in a lapidary tele-
gram: “Physics Wins!”19

High energy physicists organize theories by 
their symmetries. Supersymmetry and confor-
mal symmetry are examples. Many aspects of 

a physical theory, like the spectrum of its particle-like 
excitations, are constrained by requiring them to be com-
patible with the system’s symmetries. Group theory is 
everywhere.

The finite groups contain a finite number of elements. In 
general, the finite groups may be decomposed into subnor-
mal series, where each group in the sequence is a normal 
subgroup of the next. Finite simple groups are finite 
groups with no nontrivial normal subgroups. They are 
the building blocks of the finite groups. The finite simple 
groups are analogous to the prime numbers. As soon as the 
finite groups were understood, mathematicians conceived 
the desire to classify them, and after decades spent in 
painstaking, and tedious, collaboration, in 2004, they did. 
The finite simple groups fall into eighteen infinite fami-
lies of well-understood groups such as the cyclic groups of 
prime order, and twenty-six exotic or sporadic groups. Of 
the sporadic groups, the largest is the Monster, which con-
tains roughly 1054 elements. Many of the other sporadic 
groups can be realized as subquotients of this behemoth. 
The sporadic groups are exceptional structures; whether 
they would play any deeper role in mathematics remained 
unclear.

The answer to this question turned out to be contin-
gent on the way in which the Monster was represented. 
A representation expresses an abstract group in terms 
of linear actions on a vector space, and thereby associ-
ates each element of an abstract group to a matrix. The 
size of the matrix is the dimension of the representation. 
The irreducible representations form a complete set of 
indecomposable representations from which all other rep-
resentations may be built by simple operations like direct 
summation. The Monster has 194 irreducible representa-
tions. Every group has a one-dimensional representation 
corresponding to the trivial group action. After the trivial 
representation, the second smallest irreducible represen-
tation of the Monster is 196,883 dimensional, the next 
smallest, 21,296,876 dimensional, and so on. These are not 
numbers that encourage the mathematician to think in 
terms of explicit constructions. The Monster, and the nat-
ural objects on which it acted, remained mysterious until 
the advent of monstrous moonshine.

Modular forms arise very naturally in number 
theory. They are functions f(τ) defined on the complex 
upper half-plane. They transform covariantly when τ is  
acted upon by an element γ of the modular group  
SL2(Z):  f(γ.τ) = (cτ + d)kf(τ). This is the group of 2 × 2 

matrices with integral entries and unit determinant. The 
half-integer k is called the weight of the modular form, and 
c and d represent the two integer entries on the lower row 
of the matrix γ. Modular forms are important mathematical 
objects. The coefficients in the expansions of such forms 
are often integers of interest to number theorists. Proof of 
these integer-identities is sometimes derived from func-
tional identities antecedently satisfied by modular form.20 
The j-function is a special function invariant under mod-
ular transformations: it transforms as a modular form of 
weight 0. The j-function is, in fact, the generator of all such 
modular-invariant functions since they are all expressible 
as ratios of polynomials of the j-function.

There now follows one of those enlightening surprises 
that are characteristic of physical mathematics, one first 
noted by the group theorist John McKay in 1978. In idly 
reading a number theory book, he came across the j-func-
tion and observed that its Fourier expansion starts with 
some interesting coefficients—first 1, and then 196,884. 
But 196,884 is 1 + 196,883, and this is the dimensional sum 
of the first two irreducible representations of the Monster. 
He wrote to John Thompson, who observed that the next 
coefficient of the j-function is 21,493,760 = 21,296,876 + 
196,883 + 1.

Could this elegant number theoretic object know some-
thing about the largest sporadic simple group? It seemed 
shocking and bizarre. Whence the phrase, monstrous 
moonshine.

The mathematicians John Conway and Simon Norton 
first codified monstrous moonshine by asking how a dis-
tinguished class of modular objects could encode data 
about the Monster.21 They conjectured that one could 
associate a modular function to each conjugacy class of 
the Monster that was invariant with respect to transfor-
mations under special, genus zero subgroups G of SL2(R).22 
If so, their Fourier expansions might contain representa-
tion-theoretic data about the Monster. Their coefficients 
would then be the characters of the group element, and 
the modular function associated with the identity class, 
the j-function.23

Collective conjectures became known as monstrous 
moonshine.

And they were proved by Richard Borcherds in 1992.24 
Some elements of his proof were directly inspired by string 
theory. He also introduced many new mathematical struc-
tures, generalized Kac–Moody algebras among them, and 
these in turn have led back to interesting physics.25 Much 
of the physical content of the monstrous moonshine con-
jectures, and the central ingredient in Borcherds’s proof, 
comes from the mathematician’s refinement of conformal 
field theory. In mathematics, conformal field theories are 
known as vertex operator algebras.26 The vertex oper-
ator algebra that clarifies monstrous moonshine was 
constructed by Igor Frenkel, James Lepowsky, and Arne 
Meurman.27 The back translation into string theory was 
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undertaken by Lance Dixon, Paul Ginsparg, and Jeffrey 
Harvey.28 For string theorists, the j-function is a book-
keeping device, a partition function that counts particle 
states at a given energy level. The Monster acts on this 
vertex operator algebra as a symmetry. It commutes with 
the Hamiltonian and preserves the ground state, while 
excitations above the vacuum are organized into represen-
tations of the symmetry.

The modularity of the partition function is physically 
natural. Consider a conformal field theory on the world-
sheet of a closed string loop. The worldsheet has the 
topology of a cylinder. To compute the partition func-
tion, the two ends of the cylinder are fused to form a 
torus. The Euclidean time coordinate plays the role of a 
finite temperature—a standard identification in quantum 
mechanics and quantum field theory. The modular group 
SL2(Z) is the group of symmetries of the torus viewed as 
a topological space, and so the group assigned to classes 
of homeomorphisms mapping the torus to itself.29 These 
symmetries do not affect the underlying physics. This is 
the string theoretic promotion of the familiar fact that 
nothing we compute about a point particle in quantum 
mechanics depends on the parameterization of its world-
line. A respect for physical consistency demands that an 
arbitrary parameterization of the torus cannot affect an 
observable quantity like the partition function. The par-
tition function must be a modular invariant under SL2(Z).

The other modular functions of monstrous moonshine, 
associated with genus zero subgroups of SL2(R), also have 
conformal field theoretic interpretations when the genus 
zero group is a subgroup of SL2(Z). Their modularity falls 
under the purview of the physical argument just given. For 
genus zero subgroups of SL2(R) not contained in SL2(Z), 
the modularity of the relevant functions had no obvi-
ous explanation, physical or mathematical. Borcherds, 
of course, proved the conjectures, but this aspect of his 
proof involved a brute-force verification, as opposed to a 
conceptual explanation, of the genus zero property. This 
has long been an outstanding mystery in the already-mys-
terious moonshine. Just recently, Daniel Persson, Roberto 
Volpato and I proposed a conceptual explanation for the 
genus zero property of monstrous moonshine using the 
space-time properties of a heterotic string theory.30 This 
construction also placed the algebraic ingredients of 
Borcherds’s proof firmly in a physical context.

The monstrous moonshine observations are ultimately 
natural consequences of string theoretic spacetime and 
worldsheet symmetries and have generated striking and 
far-flung algebraic structures. Many years ago, Eugene 
Wigner asked for an explanation of the unreasonable 
effectiveness of mathematics within physics. His essay 
was influential more for asking the question than for 
answering it. It would be possible today to write a compa-
rable essay asking for the explanation of the unreasonable 
effectiveness of physics within mathematics. If mathemat-

ics and physics are in so many respects in equipoise, then 
the differences between them may be less a matter of their 
content than their technique; and that, in the end, they 
serve to show that there is only one reality to which they 
both appeal.

Wouldn’t it be lovely to think so?

Natalie Paquette is a Sherman Fairchild Postdoctoral 
Scholar in Theoretical Physics at the California Institute of 
Technology.

1. For a discussion of string theory aimed at a general audi-
ence, see: Brian Greene, The Elegant Universe: Superstrings, 
Hidden Dimensions, and the Quest for the Ultimate Theory 
(New York: Vintage, 1999).

2. Joseph Polchinski, String Theory Volume 1: An Introduction 
to the Bosonic String (Cambridge: Cambridge University 
Press, 1998); Joseph Polchinski, String Theory Volume 2: 
Superstring Theory and Beyond (Cambridge: Cambridge 
University Press, 1998).

3. While I believe theoretical physics is uniquely empowered 
to raise deep mathematical questions, this does not sug-
gest a dearth of progress in the opposite direction, though 
that is outside of my topic here. Increased mathematical 
sophistication has taught us beautiful truths about theoret-
ical physics, and I am always personally heartened when 
my own research points towards mathematical concepts of 
especial depth and elegance. This cross-cultural knowledge 
is often a crude but useful signpost when studying theoret-
ical structures. The appearance of Riemannian geometry 
in Einstein’s general relativity is one prominent example of 
mathematical beauty far preceding experimental confirma-
tion, but, nonetheless, helping guide the way.

4. For a definition and survey of physical mathematics and an 
inspiring collection of references and examples, see Gregory 
Moore, “Physical Mathematics and the Future,” Vision Talk, 
Strings2014, Princeton, June 27, 2014.

5. Edward Witten, “Constraints on Supersymmetry Break-
ing,” Nuclear Physics B 202, no. 2 (1982): 253–316; Edward 
Witten, “Supersymmetry and Morse Theory,” Journal of 
Differential Geometry 17, no. 4 (1982): 661–92; Edward 
Witten, “Topological Quantum Field Theory,” Communi-
cations in Mathematical Physics 117, no. 3 (1988): 353–86; 
Edward Witten, “Introduction to Cohomological Field The-
ories,” International Journal of Modern Physics A 6, no. 16 
(1991): 2,775–92.

6. For a recent review, see Vasily Pestun et al., “Localization 
Techniques in Quantum Field Theories,” Journal of Physics 
A: Mathematical and Theoretical 50, no. 440,301 (2017).

7. This holds for simply connected, smooth four-manifolds. 
See Michael Freedman, “The Topology of Four-Dimen-



6 / 6

CRITICAL ESSAYS

sional Manifolds,” Journal of Differential Geometry 17, no. 3 
(1982): 357–453.

8. Simon Donaldson, “An Application of Gauge Theory to 
Four-Dimensional Topology,” Journal of Differential Geom-
etry 18, no. 2 (1983): 279–315; Simon Donaldson, “Self-Dual 
Connections and the Topology of Smooth 4-Manifolds,” 
Bulletin of the American Mathematical Society 8, no. 1 (1983): 
81–83. For an overview and more complete references, see 
Simon Donaldson and Peter Kronheimer, The Geometry of 
Four-Manifolds (Oxford: Oxford University Press, 1990).

9. I have, of course, omitted many technical details. More 
precisely, one studies the moduli space of irreducible ASD 
connections, so that the isotropy group of a connection is the 
center of G.

10. Edward Witten, “Supersymmetric Yang–Mills Theory on a 
Four-Manifold,” Journal of Mathematical Physics 35 (1994): 
5,101–35.

11. Nathan Seiberg and Edward Witten, “Electric-Magnetic 
Duality, Monopole Condensation, and Confinement in N=2 
Supersymmetric Yang–Mills Theory,” Nuclear Physics B 426, 
no. 1 (1994): 19–52.

12. Edward Witten, “Monopoles and Four-Manifolds,” (1994), 
arXiv:hep-th/9411102.

13. For both the quote and a survey of these developments, 
see Simon Donaldson, “The Seiberg–Witten Equations and 
4-Manifold Topology,” Bulletin of the American Mathemati-
cal Society 33 (1996): 45–70.

14. Edward Witten, “Topological Sigma Models,” Communica-
tions in Mathematical Physics 118, no. 3 (1988): 411–49. For a 
review see Edward Witten, “Mirror Manifolds and Topolog-
ical Field Theory,” (1991), arXiv:hep-th/9112056.

15. More precisely, the sign flip is a choice of convention for 
charges under a conserved U(1) current, which is one gener-
ator in the worldsheet superconformal algebra. 

16. One among many topological identities between X and Y: the 
Hodge numbers of X can be obtained from those of Y by a 
reflection along the diagonal of the Hodge diamond.

17. Philip Candelas et al., “A Pair of Calabi–Yau Manifolds as an 
Exactly Soluble Superconformal Theory,” Nuclear Physics B 
359, no. 1 (1991): 21–74.

18. Again, one must study which quantities in the Lagrangian 
or correlation functions are Q-exact with respect to the Q 
obtained from B-twist.

19. For a more detailed account of these events for a general 
audience, see Shing-Tung Yau and Steve Nadis, The Shape of 

Inner Space: String Theory and the Geometry of the Universe’s 
Hidden Dimensions (New York: Basic Books, 2010).

20. Modular forms were central to Andrew Wiles’s proof of Fer-
mat’s last theorem: Andrew Wiles, “Modular Elliptic Curves 
and Fermat’s Last Theorem,” Annals of Mathematics 141, no. 
3 (1995): 443–551. A more recent proof using modular forms 
to great effect can be found in Maryna Viazovska, “The 
Sphere Packing Problem in Dimension 8,” (2016), arXiv:1603. 
04246.

21. John Conway and Simon Norton, “Monstrous Moonshine,” 
Bulletin of the London Mathematical Society 11, no. 3 (1979): 
308–39.

22. This name comes from the fact that the quotient of the upper 
half-plane by the modular group G has the topology of a 
sphere. A special property of genus zero groups, like SL2(Z), 
is that there is a modular function that serves as a canoni-
cal generator for the other modular functions with respect 
to that group, like the j-function. The modular functions 
appearing in monstrous moonshine are all of this type.

23. Characters are simply ordinary traces of the given group ele-
ment in the prescribed representation. The trace operation, 
being cyclic, depends only on the conjugacy class of the ele-
ment.

24. Richard Borcherds, “Monstrous Moonshine and Monstrous 
Lie Superalgebras,” Inventiones Mathematicae 109, no. 1 
(1992): 405–44.

25. Jeffrey Harvey and Gregory Moore, “Algebras, BPS States, 
and Strings,” Nuclear Physics B 463, no. 2–3 (1996): 315–68.

26. More precisely, a vertex operator algebra is the formaliza-
tion of the notion of a holomorphic, or chiral, conformal 
field theory. Conformal field theories in physics are typically 
combined with an anti-holomorphic sector as well.

27. Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex 
Operator Algebras and the Monster (Cambridge, MA: Aca-
demic Press, 1989).

28. Lance Dixon, Paul Ginsparg, and Jeffrey Harvey, “Beauty 
and the Beast: Superconformal Symmetry in a Monster 
Module,” Communications in Mathematical Physics 119, no. 
2 (1988): 221–41.

29. More precisely, it is the mapping class group.
30. Natalie Paquette, Daniel Persson, and Roberto Volpato, “BPS 

Algebras, Genus Zero, and the Heterotic Monster,” (2017), 
arXiv:1701.05169; Natalie Paquette, Daniel Persson, and 
Roberto Volpato, “Monstrous BPS-Algebras and the Super-
string Origin of Moonshine,” (2016), arXiv:1601.05412.

Published on February 14, 2018

https://inference-review.com/article/a-view-from-the-bridge

https://inference-review.com/article/a-view-from-the-bridge

