
INFERENCE / Vol. 6, No. 1

1 / 6

At Lunch with Freeman Dyson
William Press

In this essay, I would like to tell the story of a minor 
discovery in mathematical game theory that Free-
man Dyson and I made in 2011. Dyson was a personal 

friend and one of the great mathematical physicists of the 
twentieth century. He died in 2020, at the age of ninety-six. 
He was famously self-effacing, which is not to say that he 
lacked an accurate opinion of his own abilities. Freeman 
would deny that he had done anything at all and then allow 
friends—or even strangers—to vehemently contradict him. 
Our discovery was not of that character. It really was very 
minor. The reasons for telling the story now are less about 
the discovery itself and more about the tendency of scien-
tists to seek lessons in moral philosophy in the least likely 
of places—high-school algebra, for example.

Imagine that a group of scientists gather to play a kind 
of terror game. They must propose scenarios that, should 
they eventuate, would shake their belief in the foundations 
of their fields. The mathematician’s proposed terror is that 
a long message, in English, is found to be encoded—in 
excess of any plausible random probability—somewhere 
in the first billion digits of pi.1 The physicist’s terror is that 
the interaction cross-section of a fundamental particle 
will have significantly different values when measured in 
different places on earth, or in the same place at different 
times.2 The biologist’s terror is that some feature of the 
living world will be unexplainable by the principle of nat-
ural selection. Within biology’s subspecialty of evolution 
theory, there is a small area of study known as evolution of 
cooperation. That study, some would say, lies closest to the 
biologist’s terror. That makes it worth poking at.

In biology, a cooperator is an individual who pays a 
cost for another individual to receive a benefit. When 
cooperation is mutually beneficial to two individu-

als of the same or different species—a condition termed 
direct reciprocity—then it is favored by natural selection. 
There are other possibilities. In so-called kin selection, an 
individual’s self-sacrifice may be favored if, on average, it 
helps another individual in the same gene pool to survive.3 
The unit of survival is understood in this case to be not 
the individual, but the gene that two individuals share.4 It 
is harder to understand why individuals cooperate when 

defection would be more favorable or when the reciproc-
ity is only indirect.

Suppose that two microbe species, A and B, both need 
processed nutrients a and b. The cooperative state might 
be that A produces a, B produces b, and each secretes a 
portion of its nutrient for the benefit of the other. But this 
equilibrium is not evolutionarily stable: a defecting A with 
a mutation that halts its sharing of a becomes a free rider, 
benefitting from B without paying the fare. Free riders, 
avoiding a cost, will tend to take over the population. The 
evolutionarily stable endpoint is noncooperation, even 
though cooperation would be better for both species.

Cooperation among humans seems hardest of all to 
understand. “Humans are the champions of cooperation,” 
Martin Nowak has remarked. “From hunter-gatherer 
societies to nation-states, cooperation is the decisive orga-
nizing principle of human society.”5 In much, if not most, 
of our cooperation, reciprocity is indirect. To be sure, 
some people give money to universities in the hope of 
getting their own children admitted—kin selection—but 
many more give to charities that are of no direct benefit to 
themselves or their kin. Many billionaires become philan-
thropists, but from the standpoint of evolution theory, why 
is this? A quirk of our culture, maybe? But cultures, too, 
compete for dominance with other contemporaneous cul-
tures, and by a process akin to natural selection. Are we to 
understand that generosity is selectively favored? Or are 
the generous billionaires only transient?

Charles Darwin recognized that cooperation posed a 
challenge to his theory of natural selection. He described 
an elegant experiment to ferret out whether the aphid 
yields its excretion to the ant voluntarily, or involuntarily 
with the ant as a parasite.6 He provided a convincing argu-
ment that it was the former. Darwin, the consummate 
naturalist, hated overgeneralized theory. Yet the signif-
icant literature on the evolution of cooperation that has 
flourished in the last fifty years is almost entirely theoret-
ical. Much of it is cast in the formalism of mathematical 
game theory, a subject that came into existence more than 
half a century after Darwin’s death in the work of John 
von Neumann and Oskar Morgenstern. Game theory 
describes how competing, sentient players, in a well-de-
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fined universe of choices and payoffs, may knowingly seek 
to optimize their own outcomes. Evolution is the blind 
watchmaker,7 optimizing only by trial and error. Exactly 
how the achievable outcomes of evolution correspond to 
the mathematical optima of game theory is not a settled 
question.

Go back to microbes A and B, but now promote 
them to sentience. They become Alice and Bob, 
who are arrested on suspicion of committing, 

together, a serious crime. Each has sworn not to betray the 
other. They are questioned in separate rooms.

“We already have enough evidence to convict you both 
of a misdemeanor,” the detective says to each, “that will 
put you away for one year.” Each, separately, says nothing. 
“But if you defect, rat out your partner and turn state’s evi-
dence,” the detective continues, “we’ll let you go, scot-free. 
Your partner will get a felony conviction, six years in the 
state penitentiary.”

“What if we both turn state’s evidence?” Alice and Bob 
each ask.

“Well, I can’t let you both go free,” the detective says. 
“You’ll each get three years.”

Alice reasons as follows: there are only two possibili-
ties. Either Bob will rat me out, or else he won’t. If he rats, 
then I’ll get six years—unless I rat also, in which case I’ll 
get just three years. So, if he rats, I should too. But what 
if he doesn’t rat? What a chump! I can rat on him and be 
out today. So, either way, I should defect. Bob employs the 
same reasoning and defects on Alice. They each get three 
years. The pair spend the time wishing that they had both 
kept their promises not to betray each other and escaped 
with misdemeanor convictions.

The prisoner’s dilemma (PD) game, played once, has 
no direct bearing on evolution. But consider the iterated 
prisoner’s dilemma (IPD) game, first posited at the RAND 
Corporation in the 1950s: Alice and Bob play many rounds 
of the same game with each other. After following the 
same logic for a few games, Alice tentatively tries a round 
of cooperation. In that round, Bob still defects and Alice 
gets six years. But Bob has now seen Alice’s signal. He tries 
cooperation himself. Alice reciprocates. And, for a string 
of games, they are both cooperating, receiving only mis-
demeanor convictions. In the IPD, there is information 
in the previous plays, and each player can try to use that 
information to devise a superior strategy that remains 
self-interested.

Is the best strategy to cooperate always? Certainly not. 
If Alice adopts that strategy, Bob will always defect, get-
ting off scot-free, while Alice will always get six years. A 
good strategy would seem to be something like, “Coop-
erate most of the time, but don’t be a chump if the other 
player doesn’t follow suit.” Can this be formalized, or made 
crisp, in some way? By one estimate, more than 200 exper-
iments on IPD, with human or computer players, were 

conducted between 1965 and 1971. Robert Axelrod called 
IPD “the E. coli of social psychology.”8 Axelrod’s own 1980 
experiments are the most famous.9 Human contestants 
submitted algorithmic strategies that, programmed on 
a computer, were all played against each other in a tour-
nament. A strategy could be very complex. Alice could, in 
principle, look at Bob’s previous thousand plays and try to 
crack the code of his decision process. It was a big surprise 
when a very simple strategy, known as tit for tat (TFT), 
won the Axelrod tournaments. TFT starts by cooperating. 
Then, if the other player cooperates, it cooperates on the 
next round. If the other player defects, then, on the next 
round, it defects.

In later experiments, a related strategy, generous tit for 
tat (GTFT), was found to do even better. GTFT is the same 
as TFT, except that, when a tit-for-tat defection would be 
prompted, GTFT sometimes, and with a fixed probability, 
cooperates rather than defects—it is generous in that way. 
There seemed to be moral lessons in these results, pseu-
do-mathematical justifications of high human values. TFT 
embodied the Golden Rule. GTFT went further: turn the 
other cheek.

Science and ethics were in harmony.
I had long ago read Axelrod’s book and William Pound-

stone’s popular exposition, and I knew about TFT and 
GTFT.10 That was about all I knew. During the slow period 
between Christmas and New Year’s in 2011, I set out to 
understand why TFT and GTFT did so well. I was struck 
by the fact that they both were memory-one strategies. 
That is, a player’s move—cooperate or defect—depended 
only on the immediately previous round of play. Had 
anyone ever proved that GTFT, or any other strategy for 
that matter, was optimal among memory-one strategies? If 
so, I couldn’t find it in Google Scholar.

Without getting into too much detail, every memo-
ry-one strategy is defined by four numbers, probabilities 
in the range between zero and one. A match between 
two players, each playing a fixed memory-one strategy, is 
thus described by eight parameters—equivalent to a point 
inside, or on the surface of, an eight-dimensional hyper-
cube. It is not hard to derive formulas for the statistically 
expected gain or loss of each player as a function of the 
match position in the hypercube. With these formulas, it is 
not necessary to play out the games at every point, a huge 
saving in computer time.

Game theory has the important concept of Nash equi-
librium. As the players each try to improve their strategies, 
one imagines the match-strategy point moving around in 
the hypercube. A Nash equilibrium is a point where no 
small adjustment of Bob’s four parameters by Bob improves 
his score, and the same is true for Alice’s four parameters 
and her score. If the players reach a Nash equilibrium, 
then neither will see any benefit in changing strategy fur-
ther. Each sees an optimum that is at least local. Over the 
holiday, I wrote what I thought was an elegant computer 
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program to explore the game hypercube, always seeking 
better strategies. I expected it to find that the Nash equi-
librium was something like GTFT for both players.

On the computer screen, I watched the progress of the 
optimization. The match seemed to be getting closer and 
closer to a Nash equilibrium—until the program crashed. 
I tried again, starting from a different point in the hyper-
cube. Again, the program crashed, but at a different place. 
I automated the procedure and ran the program a thou-
sand times—and got a thousand crashes. But they weren’t 
at random points in the eight-dimensional hypercube. All 
of the crashes occurred on a particular four-dimensional 
hyperplane. I traced their cause to a faulty assumption 
in my program. It assumed that when Bob changed his 
strategy, it would, generically, have some effect on his own 
score, and similarly for Alice. How could this not be true? 
Apparently it wasn’t. The computer could find instances, 
but not explain them.

That was when I knew that I needed Freeman Dyson. 
The exact complement to computer intelligence, as yin 
to yang, is Freeman Dyson intelligence. This problem 
needed both kinds. I emailed a description of my puzzling 
results to Freeman. A day later, he sent back a note with 
the general result all worked out, which became equations 
1 through 7 in our paper.11 When the confusion was hacked 
away, it came down to a simple equation in high-school 
algebra, as Freeman noted. Hidden within the IPD was a 
matrix whose determinant could be forced, by either Alice 
or Bob acting alone, to be zero—with quite unexpected 
implications. We called the resulting strategies zero deter-
minant (ZD).

Overlooked in fifty years of research on IPD was the 
simple fact that Alice had the ability, by choosing a cer-
tain ZD strategy, to set Bob’s score. She could pick any 
value between that of full cooperation (the one-year mis-
demeanor) and full defection (the three-year felony). No 
matter how Bob played, that value, on average, would be 
his outcome. And Bob, correspondingly, could do the same 
thing to Alice. Game theorists already had a name for this 
situation: an ultimatum game. They had no idea that there 
was an ultimatum game hidden inside the IPD.

In the classic ultimatum game, a hundred dollars 
appears out of nowhere on the table between Alice and 
Bob. By a coin flip, one player, say Alice, goes first. “I’ll take 
$60, and you can have $40,” she tells Bob. He can either 
accept and take the $40, or else the whole hundred disap-
pears and neither gets anything. What makes it a game is 
that Alice can pick any number between $0 and $100 for 
her initial offer. What is her optimal strategy? Mathemati-
cal game theory doesn’t provide an answer; it turns out that 
all values are Nash equilibria, but not in a useful way. Psy-
chologists and economists have tried the ultimatum game 
experimentally across a wide range of locations and ethnic 
groups.12 The first player never offers more than $50—why 
should she?—and the second player rarely accepts less 

than $20 or $30, so a 60:40 split is quite typical. The game 
has been played between humans, and chimpanzees using 
raisins, with ambiguous results.13

The ultimatum variant revealed by the ZD strategies 
could be this: “Set my score to the lightest-sentence mis-
demeanor,” Alice tells Bob, “and I’ll do the same for you. 
But if for any reason you cross me, I’ll change my strat-
egy to punish you severely.” This is reminiscent of TFT, 
but it is played at the meta-level of altering strategies, not 
at the game level of individual moves. To see the differ-
ence, imagine a scenario in which Alice is facing Darwin 
rather than Bob. Darwin is the blind watchmaker who 
can only try, by small mutations in strategy, to maximize 
his score. He doesn’t know that he is playing against a 
sentient being. Evolutionary biologists speak of the fit-
ness landscape of hills and valleys in which evolution by 
natural selection can be viewed as taking place. But here, 
Alice completely controls Darwin’s fitness score. She can 
simulate any fictitious evolutionary landscape she wants. 
Darwin cannot distinguish it from a natural one. Thanks 
to ZD, she completely controls the apparent rules of the 
game. Biologists like to say, “You can’t fool evolution,” but 
this example shows that, within the constructed space of 
IPD, the ZD strategies actually can. That surprised a lot of  
people.14

The ZD strategies had yet more surprises in store. 
Instead of setting Bob’s score to a value, there is a ZD 
strategy by which Alice can set Bob’s score to be related 
to her own, extortionately. Alice picks an extortion factor: 
five, for example. She implements the corresponding ZD 
strategy for her own game, then lets Bob play any strategy 
he wants. If his strategy reduces his felony sentence by an 
amount x, which we will call his bonus, then Alice’s bonus 
will be 5x. If he optimizes his strategy by blind evolution, 
then Alice will score better than even if both cooper-
ated—not even a misdemeanor sentence, but only a traffic 
violation. Bob ends up worse off. There is nothing he can 
do about it. Alice sets the strategy.

Really? Nothing? Can’t he do back to Alice exactly the 
same thing as she is doing to him? Yes, he can. He can 
adopt a ZD strategy that sets his bonus to be five times 
hers. How can each of them have five times the bonus of 
the other? Easy: both get zero. In effect, a return to nonco-
operating three-year felony sentences. So, they are back to 
bargaining, as in the ultimatum game: “If I do this for you, 
will you do this for me?”

The most interesting result Dyson and I reached was 
this: that the outcome of the game depended on whether 
each player had a theory of mind about the other. Psychol-
ogists use the term theory of mind to mean the ability to 
attribute mental states—such as belief and intention—to 
others. When Alice plays against Darwin, Darwin has no 
theory of mind. Alice can extort him, or lead him around 
a fictitious fitness landscape, at will. But when Alice plays 
against Bob, he may have a theory of mind. Noticing that 
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his opponent’s bonuses are always five times his own, he 
thinks, “I am being extorted! I will make us both get zero. 
She will notice this. Then, we can do a deal.” But Bob may 
be wrong about this. Alice may have set her ZD strategy 
once and for all, put it on autopilot, and then vanished. 
Bob, with or without a theory of mind, can try anything 
he wants. He can only hurt himself. His best option is to 
accede to the extortion. “Press and I have solved the Pris-
oner’s Dilemma game,” Dyson told people jocularly. “The 
winning strategy is to go to lunch.”

The results described are so counterintuitive 
that some readers may want to get a sense of how 
they are derived. Label the four outcomes of the 

previous round 1, …, 4 in the order (cc, cd, dc, dd), where 
c denotes cooperate, d denotes defect, and the order is 
Alice–Bob. Alice’s strategy can be written as p = (p1, p2, p3, 
p4), her probabilities for cooperating on the current round 
given each of the four previous outcomes. Similarly, Bob’s 
strategy is q = (q1, q2, q3, q4).

The strategies p and q imply a Markov process that 
advances any mixture of outcomes one round at a time. 
The Markov transition matrix is

Because every Markov matrix has a unit eigenvalue, the 
matrix M′ ≡ M – I is singular and has zero determinant. 
The stationary vector, i.e., the long-term probability mix of 
outcomes of the game, satisfies

vTM = vT, or vTM′ = 0.

The significance of the stationary outcome probability 
vector is that its dot product with Alice’s prison sentences 
SA = (1, 0, 6, 3) or Bob’s SB = (1, 6, 0, 3) gives the expecta-
tion value of their respective times in jail. Close attention 
should be paid to the extent that each may be able to 
unilaterally influence v ⋅ f for a given f, where v is the sta-
tionary vector and f is a given four-vector.

Now the promised high-school algebra: Cramer’s rule 
for calculating a determinant, applied to the matrix M′, is

Adj(M′)M′ = det(M′)I = 0,

where Adj(M′) is the adjugate matrix—what most of us in 
high school learned as the matrix of minors. This equa-
tion implies that every row of Adj(M′) is proportional to 
v. Choosing the fourth row, we see that the components 
of v are, up to a sign, the determinants of the 3 × 3 matri-
ces formed from the first three columns of M′, leaving out 
each one of the four rows in turn. These determinants 

are unchanged if the first column of M′ is added into the 
second and third columns.

The result of these manipulations is a formula for the 
dot product of an arbitrary four-vector f with the station-
ary vector v as a single 4 × 4 determinant:

It is now possible to see the remarkable fact that the 
second column is entirely under Alice’s control (the p’s), 
while the third column is under Bob’s control. Given a 
particular f, each has the possibility of choosing a strategy 
that will make the determinant zero.

From here, it is only a short step to the results already 
mentioned. Alice chooses for f a desired linear combination 
of the score vectors, f = αSA + βSB + γ, and then calculates 
a strategy p that zeros the determinant. That linear com-
bination of scores is made zero. These are exactly the ZD 
strategies, including the specializations of extortionate or 
ultimatum.

Our paper was published in Proceedings of the National 
Academy of Sciences in mid-2012. Despite a simultaneously 
published, glowing commentary by evolutionary biologists 
Alex Stewart and Josh Plotkin, few people seemed to care 
about the theory of mind.15 What attracted attention was 
the extortion business. People reacted to it emotionally. 
Poundstone posited links to abusive marriages, terror-
ism, the current US Congressional deadlock, and income 
inequality.16 Commenting on an article about the paper, 
a reader remarked, “This and similar ‘quant’ nonsense 
is precisely what has led to the … too-big-to-fail banking 
disaster we are currently confronting. … These studies 
are worse than useless, they are parasitic cancers on soci-
ety.”17 Elsewhere, a kinder commenter added, “Once again, 
physicists invade a field and add value.” Even that seemed 
barbed.

All this from a simple equation of high-school algebra.
Emotion tainted even the soberest responses to our 

work. Mathematically speaking, we had shown that a 
broad class of two-person games—not just IPD—had 
an unsuspected hidden algebraic structure, our ZD. It 
turned out that there were other, quite different, hidden 
structures. Mathematician Ethan Akin discovered a set 
of strategies with the twin properties that Alice and Bob 
both got off with minimal misdemeanors, and that neither 
could gain by unilaterally changing strategy.18 He named 
these good strategies. Some of our ZD strategies were 
good, but others were not. By implication, they were evil. 
Stewart and Plotkin wrote an elegant paper focusing on 
the subset of ZD strategies that were generous, meaning 
that one player voluntarily ceded a greater share of reward 
to the other.19 I was relieved that some of our ZD strate-
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gies turned out to be both good and generous, though not 
including, of course, our extortionate strategies—which, 
by the way, would still beat all the good and generous strat-
egies in head-to-head competition.

Alice and Bob play against each other over and over, but 
that is not how populations work. Population biologists 
study the dynamics and evolution of a mix of strategies, 
where an Alice must sometimes compete against a Bob, 
or another Alice, or the mutant Alicia—like Alice, but 
subtly different. Additional concepts come into play. Is 
the mutant able to invade the population, so that, by its 
greater fitness over many generations, its Alicias become 
dominant? The Bobs may have a strategy that is successful 
when played against the Alices, but so mutually destruc-
tive when played against each other that a population 
dominated by Bobs is not an evolutionary stable strategy. 
In a finite population, there is a related kind of evolution-
ary inertia: a favorable mutation must exceed a certain 
threshold to avoid, on average, dying out just by chance. 
Bob’s, or Alice’s, strategy may win but still not be evolu-
tionarily robust.

To the seeming delight of many, the extortionate ZD 
strategies were found to be neither stable nor robust, nor 
able to invade a population to any significant degree. In a 
population, extortion was, roughly speaking, self-limiting. 
Extortioners would tend to mutate into generous players 
because, most of the time, generous players would be play-
ing against other generous players. Christoph Adami and 
Arend Hintze later quipped that this proved mathemati-
cally that winning isn’t everything.20 Dyson liked these 
results. I thought they were interesting and advanced the 
field, but I was bothered by the emotional coloration that 
seemed to accompany them. Freeman, I concluded, had 
gone over to the side of the sentimentalists.

We can ponder whether anything of value can be learned 
from the events I have described. That a couple of physi-
cists—the more senior, eighty-eight years old—could invade 
a field and, over a holiday vacation, find an undiscovered 
nugget capable of attracting such attention may say some-
thing about serendipity, or about the genius of Freeman 
Dyson; or it may suggest that subfields of science can easily 
become too set in their ways, and that the scientific enter-
prise should seek institutional mechanisms that encourage 
more cross-fertilization over scientific boundaries.

Also worth pondering is the human tendency to label 
scientific findings with emotive words like good, generous, 
and, yes, extortionate. Most of the time this surely does no 
harm. It makes the science livelier and helps communi-
cation to each other and the public. Occasionally, though, 
the labels in a field become a mythos that can color it with 
subjectivity. The application of game theory to evolution-
ary biology led to a mythos, according to Poundstone, that 
you can’t fool evolution and the most successful strategies 
are fair ones.21 Neither assertion is a scientific truth. In 
the nineteenth century, one particular mythos attached 

to natural selection was that it wasn’t just a description of 
the way things were, but a description of the way things 
ought to be. That led to social Darwinism and its misuse 
of science in justification of racism, imperialism, eugenics, 
and other horrors. Evolution by natural selection is what 
it is. Everyone should be on guard against labeling it with 
either moral virtues or moral failings. A decade before the 
publication of Darwin’s On the Origin of Species, Alfred 
Lord Tennyson’s poem “In Memoriam A. H. H.” gave a 
startlingly good description of natural selection. This is 
the poem where “Nature, red in tooth and claw” ultimately 
loses out to “…love, Creation’s final law.” But it is poetry, 
not science.

If I ever find myself fighting for survival in a population 
of Alices, Bobs, Darwins, and Alicias, I plan to go with ZD 
extortion. And I would advise you to do the same—but just 
not too many of you.

William Press is the Leslie Surginer Professor of Computer 
Science and Integrative Biology at the University of Texas 
at Austin.
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