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Heart of Darkness
Subir Sarkar

Cosmologists are often in error, but never in doubt. 
—Lev Landau1

In the standard model of cosmology, about seventy 
percent of the energy density of the universe—the dark 
energy driving its accelerating rate of expansion—is 

described by Albert Einstein’s cosmological constant.2 In 
this essay, I argue that the standard model of cosmology 
is wrong. This should come as no surprise. “The history 
of science,” Georges Lemaître remarked, “provides many 
instances of discoveries which have been made for reasons 
which are no longer considered satisfactory.” It may be, he 
added suggestively, “that the discovery of the cosmological 
constant is such a case.”3

Einstein published the general theory of relativity in 
1915; and in 1917, he attempted to apply his theory to the 
cosmos as a whole. The result was a universe that was 
either expanding or contracting, and, in any case, not 
static. Dissatisfied with this implication, Einstein added a 
constant to his field equation, its repulsive force balanc-
ing the otherwise attractive force of gravity.4 The result 
was a static, spherical, spatially closed but unstable uni-
verse. At almost the same time, Willem de Sitter provided 
a maximally symmetric vacuum solution of Einstein’s field 
equations. This too was initially believed to be static. The 
ensuing universe contained neither radiation nor matter, 
but, given its positive cosmological constant, it was obliged 
to expand at an accelerating rate. It is de Sitter’s universe 
that is effectively the basis of the current standard model, 
which was subsequently constructed by Alexander Fried-
mann and Lemaître.5

A  standard model for cosmology is nothing new. 
In Europe, Ptolemy’s geocentric theory held sway 
for nearly two thousand years. If its underlying 

assumptions had no physical basis, the theory was better 
than the competition.6 “Absolutely all phenomena, are in 
contradiction,” Ptolemy wrote, “to any of the alternate 
notions that have been propounded.” Like the geocentric 
model, the underlying assumptions of the standard model 
have no physical basis. Cosmologists still lack an under-
standing of dark energy, and they do not know what is 
driving the accelerating expansion of the universe.

The standard model of comology embodies a number of 
assumptions.

First, space-time is described by the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric:7

1.	

where gμv is the metric tensor, a is a scale factor de- 
scribing the expansion or contraction of space, and η is 
conformal time. The conformal transformation denoted 
by a2 stretches space without distorting shapes, and the 
redshift z measures the wavelength of light from distant 
objects. It reflects the scale factor at the time that the light 
was emitted as a ratio to its current value: 1 + z ≡ a/a0.

Second, gravity is described by general relativity:

2.	

where the cosmological constant, 𝜆, acts as a repulsive 
force that increases with distance, thus counteracting the 
attractive force of gravitation.8

Third, the only contents of the universe are ideal fluids 
possessing pressure p and energy density 𝜌, but neither 
viscosity nor vorticity nor any other dissipative properties.

With the publication of Einstein’s field equations, cos-
mologists originally argued that matter could be modeled 
as a pressureless gas—dust, in effect. That is still their 
assumption with respect to dark matter. It is no longer a 
general assumption because the early universe was dom-
inated by relativistic radiation. Even earlier, the universe 
was hot enough to melt all particles of matter. A descrip-
tion of Tμv in terms of quantum field theory is obligatory.

The complicated relationships between the geometry 
of space-time and the matter that it contains now admits 
of simplification:

3.	

where
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•	 Ωk ≡ –k/(3H0
2a0

2), and
•	 ΩΛ ≡ Λ/(3H0

2).

This is the Friedmann–Lemaître equation. It describes 
the rate of change of the Hubble parameter, H, as a function 
of the energy density of matter 𝜌m, the curvature of spatial 
sections k, and the cosmological constant itself. A similar 
term also arises from the right-hand side of this equation 
when Tμv describes quantum fields, a point first realized 
by Wolfgang Pauli and Yakov Zeldovich. If all inertial 
observers must see the same vacuum state, ground-state 
quantum fluctuations behave like a cosmological constant 
with negative pressure:

4.	

It is this that enters in the Friedmann–Lemaître equa-
tion (3), which has been rewritten above in terms of the 
fractional contributions made to the total energy density 
by matter, curvature, and the cosmological constant.9

The effective cosmological constant, Λ, is the sum of 
these unrelated terms:

5.	

The cosmic sum rule follows upon division by H0
2:

6.	

This simple equation encapsulates the standard FLRW 
cosmological model, and it is this equation that is used to 
deduce the values of various cosmological parameters. 
Since Ωm is ostensibly comprised of cold—i.e., nonrelativis-
tic—dark matter (CDM), it is called the ΛCDM model.

In the late 1990s, observations of Type Ia (SNe Ia) 
supernovae indicated that the expansion of the uni-
verse was speeding up. These stellar thermonuclear 

explosions are expected to release a standard amount of 
visible energy, and so make for a standard candle in astron-
omy.10 Such supernovae are detectable up to cosmological 
distances and, in conjunction with the redshift, provide 
a means for tracking the Hubble expansion rate beyond 
z  ~  1.11 The observed magnitude μ is a measure of the 
luminosity distance μ ≡ 5log10(dL/10 pc), which is, in turn, 
related to various cosmological parameters by

7.	

where sinn → sinh for Ωk > 0 and sinn → sin for Ωk < 0  
(1 parsec ≃ 3.3 lightyears).

These observations indicate that 0.8Ωm – 0.6ΩΛ = –0.2 ± 
0.1.12 The typical angular scale of temperature fluctuations 
in the cosmic microwave background shows that Ωk ≃ 0: 

the universe is spatially flat. Attempts to weigh massive  
clusters of galaxies, on the other hand, indicate that  
Ωm = 0.3 ± 0.1—not enough to provide the critical density 
for a flat universe. Adjusting yin to yang requires that  
ΩΛ = 1 – Ωm – Ωk ≃ 0.7. The universe is apparently domi-
nated by a cosmological constant with the value Λ ~ 2H0

2. 
The scale of Λ is thus set by H0, which is measured to be 
~70 km/sec/Mpc (i.e., h ≡ H0/100 km/s/Mpc ≃ 0.7). Its 
inverse, the Hubble radius H0

−1
 ≃ 3000/h Mpc, corresponds 

to the tiny energy scale of ~10–42 GeV in fundamental phys-
ics units. Although neither fundamental nor a constant, it 
enters into every cosmological measurement. Any infer-
ence of Λ from the data in the FLRW framework will thus 
yield a value of order H0

2.
Alarm bells ought to be ringing.
On the other hand, the acceleration of the expansion rate 

is driven by the negative pressure of the quantum vacuum: 
–pΛ = ρΛ ~ Λ/8πGN ~ (10–12 GeV)4, since 1/8πGN ≡ M2

Planck  
≃ (2.4 × 1018 GeV)2. This corresponds to a dark-energy scale 
of ~10–12 GeV. With respect to Λ, which is it to be: ~10–42 
GeV or ~10–12 GeV? Cosmological and quantum-field the-
oretic interpretations of Λ reveal a discrepancy of between 
15 and 30 orders of magnitude, corresponding to a factor of 
1060 to 10120 in the energy density.

Not surprisingly, this has been called “the worst theo-
retical prediction in the history of physics.”13

If dramatic, the statement is misleading. The vacuum 
energy in quantum field theory cannot be formally cal-
culated because it is a super-renormalizable term in the 
Lagrangian. Only the difference in energy density between 
two vacuum states can be computed. If there are changes 
in the vacuum state, further ambiguities arise in calculat-
ing the expected vacuum energy density. For astronomers, 
Λ is just another cosmological parameter, similar to 𝜌m, the 
matter density, or k, the curvature of spatial sections. From 
the viewpoint of a quantum field theorist, Λ represents a 
very delicate balancing act between the bare λ derived 
from general coordinate invariance and the divergent con-
tributions from various quantum fields. These must yield 
an overall value of Λ that is consistent with cosmological 
observations.

The less appreciated point is that in quantum field 
theory, all contributions to the vacuum energy can be 
formally canceled order by order by adding appropriate 
counterterms to the Lagrangian. This would have no effect 
on any quantity measured in the laboratory. It is only when 
the standard model of particle physics is supplemented 
by gravity that the quantum vacuum can have a possible 
effect on the universe as a whole.

When these implications were first realized in the 
1930s, they were quickly swept under the rug. “[A]s is 
obvious from experience,” Pauli confidently remarked, 
“the [zero-point energy] does not produce any gravita-
tional field.”14 This is of course true. If the zero-point 
energy of the standard model were to gravitate, it would 
have dominated the universe when it cooled to tempera-

 √ΩkH0

dL = c (1 + z) ( )sinn
 √Ωk

dz′H0 /H(z′)  ,∫
z

0

Tμv = –⟨𝜌⟩fields gμv .

Λ = λ + 8πGN⟨𝜌⟩fields .

Ωm + Ωk + ΩΛ = 1.
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tures of ~1015 K (⇒ ~100 GeV) at ~10–12s after the Big Bang. 
Depending on the sign, this would have either sent the 
universe off into an endless, exponentially fast expansion, 
or caused it to immediately re-collapse. Pauli offered no 
reason why the vacuum energy density should not gravi-
tate, and overlooked, or ignored, the obvious conflict with 
general relativity. In Einstein’s theory, all forms of energy 
must gravitate.

This is the bone in our throat.15

The oxford mathematician Edward Arthur Milne 
formulated the modern version of the cosmological 
principle in 1933. “The Universe,” he wrote, “must 

appear the same to all observers.”16 This assumption was, 
in fact, implicit in models constructed a century ago. The 
observed universe is not quite isotropic, and neither is it 
homogeneous. The interpretation of data in terms of the 
FLRW model has proceeded under the weaker assumptions 
of statistical isotropy and homogeneity. Although there 
are known inhomogeneities in the distribution of matter, 
homogeneity is restored when averaged on sufficiently large 
scales. Number counts of galaxies in spheres of increasing 
radius r are said to have demonstrated a close approach to 
homogeneity on spatial scales above ~70/h Mpc.17

For all that, we are manifestly not in the cosmic rest 
frame in which the universe is homogeneous and isotropic, 
and data can be analyzed according to the Friedmann–
Lemaître equation. If this were so, then all galaxies would 
be receding from the earth at a rate proportional to their 
distance, following Hubble’s law. But it has been known 
since the 1960s that we have a peculiar, non-Hubble veloc-
ity due to local inhomogeneities. The idealized Hubble 
flow can emerge only after sufficiently large scales are 
averaged and peculiar velocities have died away. This 
scale should be of the same order as the scale on which the 
distribution of matter, as traced by the visible galaxies, is 
sensibly homogeneous, around ~70/h Mpc.

Since we are not in the cosmic rest frame, the cosmic 
microwave background cannot look isotropic. It ought 
to exhibit a pronounced dipole anisotropy. The expected 
anisotropy is due to aberration. An isotropically distributed 
set of objects should acquire a dipole anisotropy—more 
than average density in the direction of motion, less in the 
opposite direction. There is a second effect that boosts 
distortion: photons coming toward us from the direction 
of our motion are Doppler-shifted to the blue, while the 
photons coming from behind are Doppler-shifted to the 
red. The strength of both effects should be proportional to 
β, the ratio of our velocity to the speed of light. This was 
first recognized by Dennis Sciama and John Stewart, who 
emphasized that, “If the microwave blackbody radiation is 
both cosmological and isotropic, it will only be isotropic 
to an observer who is at rest in the rest frame of distant 
matter which last scattered the radiation.”18 Jim Peebles  
and David Wilkinson then calculated that an inertial 
observer moving with velocity β in an isotropic blackbody 

radiation bath of temperature T0 will measure an effective 
temperature that varies with respect to the direction of 
motion by the angle θ :19

8.	

Since our peculiar velocity was estimated to be a few 
hundred km/s, the amplitude of the dipole in the cosmic 
microwave background temperature should then be 𝒟 = β 
≃ 10–3. This predicted anisotropy was indeed detected soon 
afterward.20 It has been measured most precisely using the 
Planck satellite.21 Its amplitude is (1.2336 ± 0.0004) × 10–3, 
implying that the sun is moving with respect to the cosmic 
rest frame at 369.82 ± 0.11 km/s toward galactic longitude 
and latitude: l(deg) = 264.021 ± 0.011, b(deg) = 48.253 ± 
0.005, which is in the constellation of Crater.

For this reason, the kinematic interpretation of the 
cosmic microwave background dipole has been widely 
accepted. Cosmological data are now routinely corrected 
by a special-relativity boost transforming the measured 
redshift and magnitudes of distant objects to the presump-
tively isotropic cosmic rest frame. In the cosmic microwave 
background frame, the large-scale averaged distribution of 
matter is also assumed to be isotropic. The Friedmann–
Lemaître equations can then be applied to the transformed 
magnitudes and redshifts.

These assumptions are no longer tenable. Sev-
eral independent data sets now argue against the 
existence of a cosmic rest frame. At low redshift 

(z ≲ 0.1), all matter in our local supercluster of galaxies 
has a coherent bulk flow approximately aligned with the 
direction of the cosmic microwave background dipole: no 
convergence to the cosmic rest frame is seen on scales as 
large as ~300/h Mpc. At high redshift (z > 1), the observed 
dipole in the sky-distribution of distant radio sources and 
quasars is significantly larger than expected according 
to the kinematic interpretation of the cosmic microwave 
background dipole. Phenomena are in conflict with the 
cosmological principle. They directly challenge the claim 
that the universe is dominated by vacuum energy, which 
rests on its assumed large-scale homogeneity and isotropy.

These are potentially paradigm-changing develop-
ments.

Since the pioneering studies by the astronomer Vera 
Rubin and her collaborators in the 1970s, it has been 
known that our Local Group of galaxies, which includes 
Andromeda and the Magellanic Clouds, participates in a 
fast coherent bulk flow.22 This departure from the uniform 
Hubble expansion happens because the local distribution 
of matter is inhomogeneous. The flow would be expected to 
become negligible by ~100 Mpc, after which the averaged 
universe becomes homogeneous. The measurement of 
the cosmic microwave background dipole yields the sun’s 
peculiar velocity relative to the cosmic rest frame. The sun 
orbits around the Milky Way in nearly the opposite direc-

T(θ) = T0 √1 − β2 / (1 − βcosθ).
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tion at ~200 km/s, and the Milky Way is moving toward 
the center of the Local Group at ~40 km/s. All this sums 
to a net motion of the Local Group at 620 ± 15 km/s toward 
l(deg) = 271.9 ± 2.0, b(deg) = 29.6 ± 1.4, which is not far from 
the direction of the cosmic microwave background dipole. 
This was ascribed to the attraction of a gigantic mass con-
centration dubbed the Great Attractor, weighing ~5 × 1016 
solar masses at a distance of ~65/h Mpc.23

Subsequently, an infrared survey by the Infrared 
Astronomical Satellite reached a depth of ~100/h Mpc. 
It showed that while the summed effects of the known 
superclusters of galaxies could account for much of the 
observed bulk flow, there was still no convergence to 
the cosmic rest frame. Infrared and X-ray surveys have 
brought further evidence that the flow continues out to the 
Shapley Supercluster at ~180/h Mpc.24 We confirmed this 
using the Union 2 catalog of Type Ia supernovae to obtain 
distances to their host galaxies in order to perform tomog-
raphy of the local velocity field. Using the same technique, 
the Nearby Supernova Factory collaboration has shown 
that the bulk flow continues even beyond Shapley, out to 
~300 Mpc, thus requiring an even bigger inhomogeneity 
to drive it.25 A detailed map of local structures by Brent 
Tully and collaborators uses direct distance measure-
ments to determine these peculiar velocities. It shows that 
this motion is in fact coherent across the Laniakea Super-
cluster, in which we live.26

So far as the universe has been mapped in detail, there 
is no convergence to the cosmic microwave background 
frame.

In a review of these puzzling observations, the astron-
omer James Gunn expressed a radical thought: “Most 
of the problem, it seems to me, would disappear if the 

[cosmic microwave background] did not, in fact, provide a 
rest frame.”27

A direct test of this had, in fact, been formulated in 1984 
when George Ellis and John Baldwin argued that if

the standard interpretation of the dipole anisotropy in 
the microwave background radiation as being due to our 
peculiar velocity in a homogeneous isotropic universe is 
correct, then radio-source number counts must show a 
similar anisotropy. Conversely, determination of a dipole 
anisotropy in those counts determines our velocity rela-
tive to their rest frame; this velocity must agree with that 
determined from the microwave background radiation 
anisotropy.28

Unlike the cosmic microwave background, radio 
sources have a nonthermal spectrum. Their flux density 
Sv—the power emitted in units of W/m2/Hz—is a decreas-
ing function of the frequency of observation: Sv ∝ v–α. The 
number of sources above some limiting flux density, per 
unit solid-angle Ω, is also a decreasing function of the 
threshold flux dN/dΩ(> Sv) ∝ Sv

–x. The net effect is that 

sources normally too faint to be detected in a flux-limited 
survey should be boosted above the threshold if they are 
in the forward direction, and boosted below the threshold 
if they are behind. This enhances the distortion consider-
ably.

The predicted dipole anisotropy has amplitude

9.	

corresponding to a maximum change of about 0.5% in the 
density of radio sources that have on average ⟨α⟩ ~ 0.75 
and ⟨x⟩ ~ 1.29

The data available at that time were inadequate to per-
form this test—as they noted. Measuring the expected 
dipole requires counting the density on the sky of at least 
several hundred thousand sources at high redshift, in 
order to adequately suppress random fluctuations.

The first catalog of radio sources became available only 
in this millennium. It is the National Radio Astronomy 
Observatory (NRAO) Very Large Array (VLA) Sky Survey, 
which mapped the entire sky north of –40 degrees decli-
nation at 1.4 GHz. Surprisingly, the radio dipole was found 
to be over twice the predicted value, although consistent 
with the cosmic microwave background dipole in direc-
tion.30 This exercise has been redone by many researchers 
who have found similar results, albeit all of less than 
three sigma in significance.31 The anomaly has not been 
accepted as genuine. Some researchers argue that it is due 
to unidentified systematics in the mapmaking or galactic 
contaminants such as nearby radio sources in the Milky 
Way. Such concerns can be addressed by making suit-
able cuts on the minimum flux and by masking out the 
Milky Way. The latter also helps to eliminate a clustering 
dipole—the accidental proximity of a random fluctuation 
in the source density. This was in fact guarded against in 
some of the cited analyses by cross-correlating with other 
catalogs of nearby galaxies and excluding any sources in 
common.

It remains true that the distribution in redshift of the 
radio sources is not directly measured but only inferred 
from their flux distribution. One cannot be certain that 
some of them do not happen to be accidentally nearby. One 
might even wonder if it is just such a local cluster that is 
also responsible for pulling us in the faster-than-expected 
bulk flow that stretches out farther than expected.

To eliminate this possibility, it is necessary to 
establish that sky-sources are cosmologically 
distant. Doing so requires measuring their red-

shifts spectroscopically, rather than by more uncertain 
photometric estimates. This is a laborious process. To 
date, redshifts have been measured for just over a mil-
lion sources; and even the largest surveys such as the 
Sloan Digital Sky Survey, cover a relatively small portion 
of the sky. The Ellis and Baldwin test requires a similar 
number of sources spread uniformly on the sky. Fortu-

𝒟 = [2 + x(1 + α)]β ,
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nately such a catalog has become available recently from 
the Wide-Field Infrared Survey Explorer (WISE) satellite. 
These data were used by my collaborator Nathan Secrest 
and his coauthors to construct a uniform catalog of 1.36 
million active galactic nuclei.32 With our collaborators 
Jacques Colin, Sebastian von Hausegger, Roya Mohayaee, 
and Mohamed Rameez, we applied various quality cuts 
on the CatWISE2020 catalog and masked out problem-
atic regions, including a band of ± 30º around the galactic 
plane.33 This revealed a strong dipole signature, its direc-
tion consistent with the cosmic microwave background 
dipole. But the amplitude of 𝒟 = 0.0154 was over twice 
as large as the expected value of 0.0072 using the mean 
values of ⟨α⟩ ~ 1.26 and ⟨x⟩ ~ 1.7 appropriate for this cat-
alog. We thus confirmed the anomaly first revealed by the 
NRAO VLA Sky Survey catalog. A representative subset of 
these quasars have spectroscopic redshift measurements 
in the Sloan Digital Sky Survey. Their mean redshift is  
⟨z⟩ = 1.2. Fewer than 1% of the sources are at z < 0.1.

The anomalously large dipole is not of local origin.

To quantify this discrepancy, we simulated ten 
million mock skies by randomly sampling the 
quasar catalog according to the distributions of 

flux densities and spectral indices. We applied the same 
masks and flux cuts as for the real sky, and then intro-
duced relativistic aberration and Doppler boosting with  
β = 0.00123 as per the kinematic interpretation of the 
cosmic microwave background dipole. Such was our 
null hypothesis. The calculation yielded a distribution of 
expectations for the quasar dipole. Only 5 out of 10 million 
simulated skies exhibit a dipole as large as the real one. 
The null hypothesis was rejected with a p-value of 5 × 10–7, 
which corresponds to a significance of 4.9σ for the normal 
distribution. The CatWISE2020 catalog has almost no 
objects in common with the NRAO VLA Sky Survey cata-
log. Combining their results forces us to reject the standard 
cosmological model expectation at nearly 6σ.34

This anomaly can no longer be dismissed. It appears 
that the cosmic rest frames of matter traced by quasars 
and the cosmic microwave background do not coincide. 
This strikes at the very heart of the FLRW models, as 
Ellis and Baldwin noted.35 And it calls into question all the 
inferences drawn from analysis of cosmological data in 
this framework: in particular, the inference that the uni-
verse is dominated by a cosmological constant.

Still, none of these probes is directly sensitive to Λ. Since 
the value of Λ is inferred from the cosmic sum rule, their 
analysis relies on the assumptions of isotropy and homo-
geneity. There is no independent evidence of accelerated 
expansion from any of the low redshift probes. They are 
equally consistent with expansion at a constant rate.36

In 2014, a collaboration of nearly all of the world’s 
supernova astronomers made public a catalog of 740 
spectroscopically confirmed Type Ia (SNe Ia) superno-
vae compiled from all available surveys and uniformly 

calibrated in a joint light-curve analysis.37 The measured 
redshifts and magnitudes had all been boosted to the 
cosmic microwave background frame. Corrections were 
made for the peculiar velocities of the supernova host gal-
axies in our bulk flow, assuming that there is convergence 
to the cosmic microwave background frame beyond ~150 
Mpc.

Motivated by the work of Christos Tsagas, we had rea-
sons to question this analysis.38 Tsagas had observed that 
tilted observers embedded in a bulk flow may erroneously 
conclude that they are accelerating even when the expan-
sion rate is globally decelerating. A clear signature would 
be a dipole asymmetry in the derived q0 toward the bulk-
flow direction.39 In the ΛCDM model, the SNe Ia data is 
fitted to the magnitude-redshift relationship in Equation 
7. On the other hand, to determine a kinematic quantity 
like acceleration, the luminosity distance can be expanded 
in terms of increasing derivatives of H0, q0, and the jerk 
parameter j0 = ä/aH3|0. The result is a power series that is 
adequately accurate for z ≲ 1:

10.	

In order to be model-independent, we used the above 
equation, but allowed the deceleration parameter to have 
both direction and scale dependence:

11.	

where qm and qd are the monopole and dipole components, 
𝑛̂  is the direction of the dipole axis, and ℱ(z, S) describes 
its scale dependence. The best fit was found to be an expo-
nential form: exp(–z, S). To determine the best fit to the 
joint light-curve analysis data, we used the statistically 
principled maximum likelihood estimator we had earlier 
constructed,40 rather than adjusting error bars to fit the 
ΛCDM model.41 This revealed that the inferred acceler-
ation is indeed a dipole and is ~50 times larger than the 
monopole. It falls off exponentially with a scale length of 
~80/h Mpc. The monopole qm is consistent with being 
zero at just 1.4σ. But the dipole component qd is not zero 
at 3.9σ.42 This is in accordance with Tsagas’s expectations 
from the Raychaudhuri equation of general relativity and 
clearly demonstrates that the inferred acceleration is not 
due to a cosmological constant.43

It exists because we are non-Copernican observers 
embedded in a deep bulk flow.44

The original analyses by the Supernova Cosmology Proj-
ect and High-z Supernova Search teams had employed, 
respectively, just 60 and 50 SNe Ia, 17 of which were in 
common. We found that most of these SNe Ia were also in 

q = qm + qd ⋅ 𝑛̂  ℱ(z, S),

dL =
 H0

cz 1 +
2
1 (1 – q0)z

( )1 – q0 – 3q0
2 + j0+ z2 + …   .

6
1

H0
2a0

2

kc2

+
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the general direction where qd peaks.45 Forthcoming data 
from the Dark Energy Spectroscopic Instrument and the 
Rubin Observatory Legacy Survey of Space and Time will 
establish definitively whether the inferred cosmic acceler-
ation is indeed anisotropic. If so, dark energy will be ruled 
out as the explanation.

In FLRW cosmology, the value assigned to Λ is inferred 
from the cosmic sum rule, which itself follows from the 
assumptions of homogeneity and isotropy encapsulated 
in the FLRW metric. More complicated metrics can be 
formulated for inhomogeneous and anisotropic uni-
verses,46 but such models have not been explored in as 
much detail as the FLRW models, especially with regard 
to structure formation. In such extended models, Ein-
stein’s equations do not simplify to a straightforward sum 
rule. Additional terms are required and the inference of Λ 
becomes ambiguous. The Lemaître–Tolman–Bondi model 
provides an exact solution of Einstein’s equations for a 
radially inhomogeneous but isotropic universe. The same 
data can be fitted by an appropriate radial variation of the 
metric, rather than with Λ.47 Though we see gravitational 
instability develop from the small density fluctuations 
imprinted on the cosmic microwave background, the evo-
lution of cosmic structure in such a model has yet to be 
fully explored. By contrast, the FLRW model successfully 
describes the entire evolution of the universe. Using the 
fundamental laws encoded in the standard model of parti-
cle physics, we can in fact extrapolate reliably as far back 
as ~10–12 seconds after the Big Bang.48

The universe becomes simpler as we go back to such 
early epochs. The energy density becomes dominated by 
matter, and then by radiation, which scales even faster 
with the redshift, when Ωm(1 + z)3 is overtaken by Ωr(1 + z)4  
at z ≳ 104. The energy density is then well-described by 
the Einstein–de Sitter model, which has zero curvature 
and zero Λ. It is only in the late universe at z ≲ 1 that this 
oversimplified framework leads us to infer domination 
by unphysical dark energy. It is here that the cosmologi-
cal model must be made more sophisticated to take into 
account the inhomogeneities that arise due to gravitational 
collapse.

Major attempts along these lines are the backreaction 
program led by Thomas Buchert and the ambitious times-
cape cosmology of David Wiltshire.49 These proposals are 
controversial and have not been widely accepted.50 Per-
haps that is simply because the ΛCDM model is so much 
simpler and easier to confront with a wide variety of data 
such as gravitational lensing, baryon acoustic oscillations, 
galaxy clusters, and fluctuations in the cosmic microwave 
background. All are supposedly concordant in this frame-
work.51

It is not new, this realization that the universe we 
inhabit does not look like the idealized FLRW model. 
Rubin, when interviewed for an oral history project in 

1998, was asked,

Taking into account a large body of work besides the Geller, 
de Lapparent, Huchra work—your own work on the large-
scale motions and the work of the Seven Samurai and all 
of that work which has shown that the universe is more 
inhomogeneous than might have been present in simple 
models—has that altered your view of the big bang model 
at all, or of the validity of the model, the assumptions of the 
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