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The Color Out of Space
Darryl Seligman

In response to “Interstellar Overdrive” (Vol. 6, No. 3).

To the editors:

Since the early nineteenth century, astronomers have 
hypothesized the existence of interstellar comets. William 
Herschel obtained careful observations of two different 
comets, which he outlined in two papers published in 1812: 
“Observations of a Comet, with Remarks on the Construc-
tion of Its Different Parts” and “Observations of a Second 
Comet, with Remarks on Its Construction.”1 Herschel dis-
covered that the two comets attained different levels of 
brightness despite similar distances to the sun. This led 
him to speculate that some comets may originate beyond 
the solar system, and that the differences in their level of 
activity can be attributed to the accumulation of matter as 
they voyage through interstellar space:

Should the idea of age be rejected, we may indeed have 
recourse to another supposition, namely, that the present 
comet, since the time of some former perihelion passage, 
may have acquired an additional quantity (if I may so call 
it) of unperihelioned matter, by moving in a parabolical 
direction through the immensity of space, and passing 
through extensive strata of nebulosity.2

This hypothesis was subsequently validated by 
Pierre-Simon de Laplace in his foundational work Sur 
les cométes. In Essai philosophique sur les probabilités, he 
even provided a surprisingly accurate calculation for the 
arrival rates of interstellar comets.3 As part of Herschel 
and Laplace’s vibrant and imaginative construction of the 
cosmos, interstellar space was filled with freely streaming 
comets. These interstellar vagabonds would peacefully 
pass through the enormity of space until encountering 
a star like the sun, where they would erupt with violent 
cometary tails. In Herschel and Laplace’s cosmology, 
these comets should regularly appear in the night sky on 
unbound and hyperbolic trajectories.

The twentieth century brought significant advances in 
our understanding of comets that originate in the solar 
system. We now know that typical solar system comets 

arrive not from interstellar space, but from the Kuiper belt 
and the Oort cloud. Yet astronomers had been expecting 
to find interstellar comets since the days of Herschel and 
Laplace. The composition of the comet C/2016 R2, for 
example, is so anomalous that scientists have proposed 
that it has an interstellar origin.4 Astronomers have even 
estimated the number of interstellar comets they would 
detect with future surveys based on the non-detections of 
any such objects.5

It was not surprising, then, when the first interstellar 
object was detected from the summit of Haleakalā, rush-
ing through the inner solar system on the night of October 
19, 2017. Within days, it had a name—‘Oumuamua—which 
roughly translates from Hawaiian as “a messenger from 
the distant past.” And in every way that astronomers 
expected the first interstellar comet to behave, ‘Oumua-
mua acted the opposite.

‘Oumuamua brought many mysteries, including a 
reddish color,6 an elongated shape,7 a non-gravitational 
acceleration,8 and a lack of any detectable coma. Even its 
slow incoming trajectory implied a surprisingly young 
age,9 less than about 40 million years.10 This is much 
younger than might be expected for a typical interstellar 
comet ejected from a stellar system.

Grappling with our apparent isolation in the universe 
is an innately human experience. It is only natural then, to 
realize our collective isolation as a species, and to project 
onto the physical world a selfish communal desire to be 
discovered. Astrophysical advances, in turn, have provided 
a grander stage for the anthropomorphism of the natural 
world. It is not surprising that our first interstellar visitor, 
so tantalizingly reminiscent of Arthur C. Clarke’s Rendez-
vous with Rama, generated worldwide interest, along with 
claims of a non-natural provenance.

Science should be inherently unbiased and objective, 
although it rarely is. Just as we should avoid anthropo-
morphizing undeniably natural phenomena within the 
universe, we should also avoid being close-minded to the 
point we deny apparent exotism. The fact that ‘Oumua-
mua defied every expectation implies that the scientific 
community should consider every exotic hypothesis for its 
provenance.
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The explanations for ‘Oumuamua can broadly be orga-
nized into two categories based on the proposed source of 
its anomalous acceleration. The first category relies on the 
assertion that the nongravitational acceleration was pow-
ered by solar radiation pressure. This idea was proposed 
by Marco Micheli et al. and was originally ruled out due to 
the assumed physical characteristics of the object in this 
scenario.11 In order for solar photons to change ‘Oumua-
mua’s trajectory, it would need to be either extremely 
porous or very thin. This theory was reinvigorated by a 
series of investigations suggesting that ‘Oumuamua was 
the result of large-scale diffusion-limited aggregation—the 
equivalent of a kilometer-scale dust bunny or snowflake.12 
While this would explain the anomalous acceleration and 
lack of coma, it did not explain the object’s extreme geom-
etry and young age.

Alternatively, if ‘Oumuamua was a millimeter thin mem-
brane, radiation pressure could power the acceleration.13 
Contrary to what is stated in this review, the spin state of 
an elongated object under the action of radiation pres-
sure is steady.14 Moreover, this theory naturally explains 
the age, shape, and acceleration of ‘Oumuamua. The mere 
existence of such a radiation-powered thin membrane 
would imply intelligent design. But if the detection of 
‘Oumuamua was coincidental, then the galaxy contains 
more than an Avogadro’s number worth of similar objects. 
The sheer implied number density is difficult to reconcile 
with an artificial origin.

The remaining theories rely on the sublimation of ice as 
the source of the acceleration.15 From energetic constraints, 
the only viable accelerants are hydrogen, nitrogen, and 
carbon monoxide.16 If ‘Oumuamua was a hydrogen iceberg 
that formed in a starless core in the interstellar medium, 
there would be a natural explanation for its acceleration, 
shape, young age, and the implied number density.17 But 
the frigid temperatures required for the freezeout of solid 
hydrogen are close to that of the ambient cosmic micro-
wave background and are difficult to justify theoretically.18

Solid nitrogen is an appealing candidate for the acceler-
ant because astronomers have observed it on bodies in the 
solar system.19 The problem with this explanation is that 
the implied galactic mass budget of these objects is difficult 
to harmonize with the formation mechanism.20 Carbon 
monoxide is a similarly intriguing potential accelerant,21 
because it would imply an initial similarity with the second 
interstellar comet, 2I/Borisov, observed on December 8, 
2019, and the comets native to the solar system. But given 
the non-detection of carbon monoxide with the Spitzer 
Space Telescope,22 this hypothesis requires that ‘Oumua-
mua underwent variable levels of outgassing. While viable, 
this explanation is somewhat ad hoc. 

There exists no explanation for the provenance of 
‘Oumuamua that describes every mysterious property 
without theoretical or observational barriers. But there 
is reason for optimism because we will have answers, and 

very soon. The forthcoming Rubin Observatory Legacy 
Survey of Space and Time (LSST) will provide almost 
nightly coverage of the entire southern sky from the Ata-
cama Desert and should detect about five interstellar 
objects like ‘Oumuamua every year.23

If the LSST had been online before ‘Oumuamua was 
discovered, performing an in situ interception mission 
would have been achievable and well within the capabili-
ties of today’s rocket inventory.24 Among all the interstellar 
objects that the LSST will detect, about one in five should 
be reachable targets for an interception.25 With missions 
like the European Space Agency’s Comet Interceptor and 
NASA’s Bridge concept,26 it is likely that such a rendezvous 
will become possible in the next decade. This would allow 
for detailed in situ measurements, which would defini-
tively determine what the galactic census of minor bodies 
consists of—whether it be hydrogen icebergs from starless 
cores or artificial relics.

Just as the minor bodies in the solar system have 
revealed more about its formation than the planets them-
selves, interstellar objects will reveal more about the 
constituents of the galaxy than the extrasolar planets and 
stars. As was the case during the period following the dis-
covery of the first Kuiper belt object, when thousands of 
trans-Neptunian objects were detected and characterized, 
we are on the cusp of detecting a wave of these interstellar 
objects.

Darryl Seligman is the T. C. Chamberlin Postdoctoral 
Fellow in the Department of the Geophysical Sciences  
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